OptoPath™  is a platform for innovative experimental research in CNS psychopathologies.
Over 10 years of experience, this platform has been conducted by a group of experts from two research institutes in Neurosciences (Magendie Neurocentre / The Institute of Neurodegenerative Diseases) at Bordeaux University.

 

OPTOPATH CNS EXPERTISES

OptoPath™ combines the expertise of neurobiologists, electrophysiologists and experimental psychologists for the identification of new therapeutic targets against 4 major psychological disorders: addiction, obesity, PTSD/Anxiety-related disorders and memory deficits. For these 4 types of psychopathologies, OptoPath™  uses innovative rodent behavioral models that can be combined with state or the art tools for neurobiological investigations such as multi-sites electrophysiology, optogenetics and deep brain vascular imaging in behaving rodents.

Innovative rodent behavioral models

We have developed over the past years innovative rodent behavioral models for 4 major psychological disorders: addiction, obesity, PTSD/Anxiety-related disorders and memory deficits.

For addiction, using complementary procedures of a gold standard model, i.e. intravenous self-administration in rodents, we evaluate the addictive risk of new psychoactive compounds (a legal prerequisite for marketing authorization) as well as the anti-addiction potential of new compounds.

For obesity, we have developed a novel experimental set-up that allows studying animal feeding behavior in conditions resembling the human situation. Thus, the associated phenotypic characterization is expected to shed light on the mechanisms underscoring vulnerability or resistance to obesity, providing critical insight into the physiopathological mechanisms leading to the disease.

For PTSD/Anxiety-related disorders, OptoPath scientists have developed a pertinent behavioral model based on the clinical dimensions of the PTSD precisely defined by the DSM-IV (the reference manual of psychiatry).

For memory deficits, we propose translational models from rodents to humans that allow evaluating the different memory components degrading in aging, i.e. short-term memory maintenance and updating, as well as long-term memory flexibility, and testing the negative and positive effects of new psychoactive compounds on these functions.

Single unit and Local field potential extracellular recordings in behaving rodents

Simultaneous extracellular recording of the spiking activity of large numbers of individual neurons along with recordings of local field potentials during different brain state (Awake, slow wave sleep, REM sleep) in different neuronal structures under baseline conditions or in a number of behavioral tests.

Optogenetic coupled to in vivo electrophysiology

Optogenetics combines genetic engineering and optics to observe and control the function of genetically targeted groups of cells in intact animals. It is used:

  • To probe defined neuronal circuits or precise neuronal populations
  • To manipulate neuronal circuits in a reversible manner with high spatial and temporal precision (milliseconds timescale)

To delineate the function and plasticity of defined neuronal circuits during behavior, in combination with electrophysiological and pharmacological approaches

Deep brain vascular imaging

Fibred confocal fluorescence microscopy (Cellvizio®) which allows dynamic and functional imaging of neuronal, but also vascular, ensembles in deep brain structures

Case study

Memory deficits

Learn more

Case Study

Fear-related memory - PTSD

Learn more

OptoPath™ Experts

Véronique DEROCHE
Optopath Addiction Expert
Nora ABROUS
Optopath Expert in Memory Deficits
Aline MARIGHETTO
Optopath Expert in Memory Deficits
Daniela COTA
Optopath Expert in Obesity
Bruno BONTEMPI
Optopath Expert in Memory Deficits
Serge AHMED
Optopath Expert in Addiction

More about OptoPath™